BIM 기반 비정형 외장 패널 및 하부재 설계 및 제작 자동화

Automation in Irregularly Shaped Façade Design and Fabrication

박광춘 대표

PARK, Ghwang Chun CEO

㈜스틸라이프

STEELLIFE Co. LTD. KIM, Seon Woo Kim, Seonwoo

김선우 파트너 신테그레이트

SYNTEGRATE LLC

This article presents a case study of LH's new headquarters, which employs the latest BIM technology to automate design details and fabrication for irregularly shaped façades. Instead of using the existing façade design, which uses the twisted built-up beam method, the spaceframe method was applied, and automated tools were used for the design and analysis of all spaceframe elements. Panels and panel sub-frames were designed and analyzed using automated programs as well. This method enabled the team to reduce the project workload for 9 people over the course of 10 days, to 1 person in 1 day. The automated spaceframe design itself was completed by a single person in 1 day, when it would normally take 10 people over 10 days. Using enhanced methods for detail design and fabrication, the improved productivity enabled the team to complete the project successfully.

<그림 1> LH 본사 신사옥 공사 및 완공 모습

배경 및 프로젝트 개요

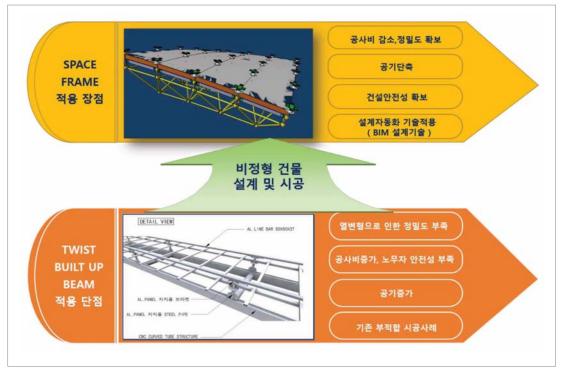
LH 본사 신사옥〈그림 1〉은 정부의 공기업 지방 이전 정 책에 따라 경상남도 진주에 건설되는 공공기관 사옥 중 최대 규모를 자랑한다. 높은 품질의 건축물 구현 및 지역 사회와의 커뮤니티 형성에 중점을 두고 프로젝트가 진행 되었고, 주 건물과 부속건물의 연결부가 '천년나무' 나무 뿌리에서 줄기로 올라오는 형상처럼 비정형 곡면으로 구 성되어 있는 형태적 특징을 가지고 있다. 이러한 형상은 디자인 측면에서는 아름답지만, 기존의 2D 도면을 활용 한 방법으로는 제작 및 시공에 있어서 많은 어려움이 있 다. 이러한 어려움을 해결하기 위해 프로젝트 팀은 외장 설계 및 시공에 있어서 BIM을 적극 활용하였다. 비정형 형상에 대한 철저한 분석, 기존 설계 변형을 최소화하기 위한 디지털 목업 활용, 자동화된 BIM 모델 생성 및 데이 터 추출 프로세스 적용이 이루어졌고, 외장 패널 및 하부 재 제작에는 생성된 BIM 데이터가 직접 사용되었다. 이러 한 자동화된 BIM 기반 설계 및 제작 프로세스는 많은 시 간과 설계비용의 절감을 가져왔다. 스틸라이프는 본 프로 젝트에서 외장 설계 및 시공을 총괄하였고 신테그레이트 는 BIM 기술 및 프로세스에 대한 자문을 제공하였다.

외장 설계 자동화 기술 개발

본 프로젝트 이전부터 다양한 비정형 건물에 대한 외장 설계, 제작 및 시공을 수행하는 과정에서, 복잡한 형상 을 그대로 유지하면서도 빠르고 정확한 외장 시스템 설 계를 위한 자동화 도구의 필요성 및 유용함을 경험해왔 다. 전곡 선사 박물관 프로젝트에서는 패널 전개도와 T-바 제작도, 그리고 부재 번호 생성방법을 자동화하였고, 송도 글로벌 캠퍼스 프로젝트에서는 전체 패널에 대한 형태별, 공정별 분류 및 좌표관리에 대한 자동화가 이루

<표 1> 프로젝트 별 자동화 기술

	프로젝트	자동화 기술		
전곡 선사 박물관			- 패널 제작도 - T-BAR 제작도 - 이름 적용	
송도 글로벌 캠퍼스			- 좌표 관리 - 패널 타입 분류	
동대문 디자인 플라자			- 하부재 설계 - 패널 지지 프레임 및 스티프너 설계	
여수 엑스포 주제관			- 거푸집 폼 설계를 위한 면 분할	


어졌다. 동대문 디자인 플라자 프로젝트에서는 패널, 스티프너, 그리고 하부재의 많은 종류 때문에 이미 개발된 자동화 프로그램 외에도, 판넬 데이터 생성 및 제작도와 조립도 생성 과정을 자동화하였다. LH 진주 사옥 신축공사에서는 스페이스프레임 자동화 프로그램을 개발하여 사 용하였다. 외장 시스템 설계 외에도, 여수 엑스포 주제관 프로젝트에서 는 비정형 거푸집 제작을 위해 외장 형상을 자동으로 분할하는 시스템

을 개발하였다. 개략적인 프로젝트 별 자동화 기술 개발 내용은 아래와 같다(표 1).

LH 본사 비정형 외장 시스템

LH 본사에 적용된 기존 외장 시스템은 트위스트 빌트업 빔(twist built-up beam)이었다. 이 시스템은 비정형의 형 상에 적용 시 어려움이 있을 수 있다. 먼저 부재 용접 시 열 변형으로 인해 시공 품질이 떨어질 수 있다. 비정형 건축물 시공에서 복잡한 형상을 건축가의 설계 의도대 로 구현하기 위해서는 제작 및 시공 정밀도가 매우 중요 하다. 만약 부족한 정밀도로 인해 시공 품질이 좋지 않 으면, 비정형 건축물의 경우 쉽게 이러한 부분이 눈에 띌 수 있고, 재작업, 공기 연장 등으로 인한 공사비 증가가 발생할 수 있다.

해당 프로젝트에서는 트위스트 빌트업 빔 방식의 단점을 극복하기 위해 스페이스프레임 방식이 제안되었다<그림 2〉. 스페이스프레임을 사용하면 트위스트 빌트업 빔을 사 용한 것보다 공기를 줄일 수 있는데 이는 공사비를 감소 와 품질 향상으로 이어질 수 있다. 또한 블록 단위로 설치 가 가능해, 작업자의 안전성을 높일 수 있기 때문에, 스페 이스프레임은 LH 본사 시공을 위한 최적의 대안 기술이 었고, 여기에 BIM 기반 자동화 프로그램을 활용하여 더욱 빠르고 정확하게 해당 프로젝트를 완수할 수 있었다.

<그림 2> LH공사에 적용된 외장 지지 구조 비교

<표 2> BIM을 활용한 외장 패널 및 하부재의 설계 및 제작 프로세스

순서	과정	내용					
1	비정형 설계 곡면 분석 및 최적화	초기 비정형 곡면 설계 안은 제작 및 시공 비용에 앞서서 자세한 검토가 이루어져야 한다. 그리고 건축가의 의도에 벗어나지 않는 범위에서 곡면은 제작이 용이하도록 최적화가 이루어진다.					
2	패널화	패널 및 하부재 모델을 제작하고 관리하기 위한 선행 작업으로 패널 이름을 포함한 각종 표준이 고안되고 적용된다. 원 비정형 곡면은 제작이 가능한 크기와 형태로 패널화되고 고안된 표준관련 정보가 입력된다.					
3	하부재 설계 및 모델 자동 생성	먼저 하부재에 대한 설계가 이루어진다. 그리고 CATIA에서 개발된 프로그램을 활용하여 모든 하부재 모델이 생성한다. 모든 모델은 설계 변경에 유연하게 대처 가능하도록 파라메트릭하게 구성된다.					
4	제작 도면 및 기타 정보 자동 추출	패널 및 하부재의 제작 도면 생성을 위한 자동화 프로 그램을 개발되고 사용되었다. 이 과정에서 2D 제작 도면 추출에 소요되는 수많은 시간이 단축된다. 추출된 제작 도면은 제작 시, 작업 지침으로 활용된다.					
5	BIM 데이터를 활용한 제작	패널 및 하부재의 제작을 위한 모든 형상정보는 BIM 모델로부터 변환 혹은 추출되어 제작 기계로 전송되 어 성형에 사용된다.					

<표 3> 패널 및 하부재 생성 소요 시간 비교

패널, 스티프너	패널 개수	스티프너 개수	장당 시간	근무 시간	근무 일	인원 수	개월	총 일수
수동	5,222	20,888	1	8	25	1	26.11	783.3
자동	5,222	20,888	0.03	24	30	1	0.291	8.73

<표 4> 스페이스 프레임 생성 소요 시간 비교

스페이스 프레임		부재 개수	장당 시간	근무 시간	근무 일	인원 수	개월	개월	총 일수
수동	프레임	9,904	0.04	8	25	3	0,66	1,2	90
	노드	2,590	0.125	8	25	3	0.54		
자동	프레임	9,904	0.001	24	30	1	0.012	0.024	0.72
	노드	2,590	0.003	24	30	1	0.012		

BIM을 활용한 스페이스 프레임 설계

본 프로젝트의 스페이스 프레임 멤버는 약 9,900개, 13타 입 노드는 약 2,590개 정도로, 수동으로 제작 도면 작성 시 약 720시간 (1인, 일8시간, 주5일 근무 기준) 정도가 걸리는 것으로 예상되었다. 이것은 약 3.6개월에 해당되 는데, 설계 기간 단축과 작업 효율성을 위해 스페이스프 레임 자동화 프로그램이 사용되었다.

세부 단계는 다음과 같다. 먼저 프로그램에 사용될 수 있 도록 외장 기준면을 검토 및 수정하고, 카티야를 이용하여 점, 선, 그리고 면을 순서대로 자동 생성한다. 그리고 시공 순서를 반영한 작업 구역(zone) 설정한다. 생성된 데이터 는 마이다스로 전달되어 구조 분석이 이루어지고 그 결과 값은 자동으로 추출된다. 이 결과값은 카티야로 전송되고 기존 모델을 분석된 결과값들로 자동 업데이트된다. 생성 된 스페이스프레임 모델은 간섭 체크가 이루어지고 간섭 이 발생하면 맴버 및 노드 볼의 크기가 자동으로 변경된 뒤, 마이다스로 재전송되어 구조분석이 다시 이루어지고 최종 구조 분석 수치가 나오게 된다. 마지막으로 공장제 작을 위한 스페이스프레임 제작도면과 현장시공을 위한 조립도면이 자동 생성된다.

BIM을 활용한 패널 및 하부재 설계 및 제작정보 생성

LH 공사 프로젝트에서는 약 5,000개의 패널, 약 20,000개 의 스티프너가 제작되어야 했다. 만약 수동으로 제작 도 면을 작성할 경우 약 5,000시간(1인, 일8시간, 주5일 근무 기준) 정도가 소요된다. 이 경우 패널 및 스티프너 제작 에만 25개월이 필요한데 주어진 시간 내에 해당 작업을 완료하기 위해서는 자동화가 필수적이었다.

패널 및 하부재 자동화 프로그램은 다음과 같은 단계로 이루어져 있다. 먼저 건축가가 설계한 초기 비정형 외 장면 모델이 분석된다. 그리고 이 면이 추후 작업에 활 용되도록 보정되고 패널화된다. 패널 하부재 생성을 위 해 자동화 템플릿에 사용하여 입력값으로 사용되게 되 는 지오메트리 요소를 자동 생성한다. 그리고 이 입력 값들을 사용하여 패널 하부재 BIM 모델이 자동 생성된 다. 마지막으로 생성된 모델로부터 제작도면과 데이터 가 자동 추출된다. 이 프로세스를 다시 한번 정리하면 표 2와 같다.

자동화 프로그램 개발 및 생산성 향상

아래 표 3, 표 4는 LH 공사 프로젝트에서 패널, 스티프너

및 스페이스프레임 모델 생성, 2D 제작도면 그리고 데이터 추출 작업 에 필요한 수작업 시간과 자동화 프로그램을 활용한 작업 시간을 보여 준다. 자동화 프로그램은 모든 입력값이 프로그램의 규칙에 맞게 설정 된 상태로부터 소요되는 시간을 계산하였고, 자동화 작업에 사용되는 컴퓨터는 하루 24시간, 한 달 30일을 작업을 수행하는 것으로 가정하였 다. 작업자는 일 8시간, 주 5일 일하는 것으로 가정하였고, 한 달은 30일 로 가정하였다.

표 3 의 결과는 자동화 프로그램 활용(약 7일)시 보다 수작업(약 26개 월)시 약 90배의 시간이 더 필요하다는 것을 보여준다. 자동화 프로그 램이 특수한 형상의 패널을 제외한 총 면적의 약 80% 정도만 적용 가능 하다는 것을 감안하더라도 해당 프로그램의 사용이 매우 큰 생산성 향 상을 가지고 온다는 것을 알 수 있다.

표 4 의 결과를 보면, 수작업(약 1.2개월)시 자동화 프로그램 활용(약 8 시간)한 것과 비교할 때 약 125배의 시간이 더 필요한 것을 알 수 있다. 자동화 프로그램 개발 비용 및 시간, 사용 용이성, 적용 가능 대상 비율, 그리고 작업자의 프로그램 사용 숙련도 등을 감안하더라도, 위의 결과 에서 볼 수 있듯이 BIM을 활용한 자동화 프로세스는 큰 생산성 향상을 가지고 왔다.

맺음말

LH 신사옥 건설공사에서는 BIM 기반의 비정형 외장 설 계 및 제작 자동화 기술이 사용되었다. 기존의 트위스트 빌트업 빔 방식에 비해 효과적인 스페이스프레임 방식을 적용하였고, 모든 프레임 부재의 설계 및 분석은 BIM 기 반의 환경에서 개발된 자동화 프로그램을 사용하여 이루 어졌다. 패널과 하부재 또한 자동화 프로그램을 통해 분 석, 설계 및 데이터 추출이 이루어졌다. 이 결과, 패널 및 하부재 작업의 경우 9명이 10일 할 작업량을 1명이 하루 에 할 수 있었고 스페이스프레임 작업은 10명이 10일 할 작업량을 1명이 하루에 할 수 있을 만큼 생산성을 향상 시킬 수 있었다. 이러한 BIM 기반 자동화 기술을 바탕으 로 추후 BIM 협업 시스템 환경을 구축하여 지식과 정보 를 공유하고, 작업 과정를 표준화하여 진보된 프로세스 를 구축할 예정이다. 또한 비정형 건축물의 시공을 위해 BIM 기반 자동화 기술뿐 만 아니라 고정밀 비정형 형상 금속 패널 및 다양한 재료(인조대리석, 곡면유리 등)를 사용한 생산 기술을 확충하여 국내 비정형 건축물 시공 기술력 향상에 기여하고자 한다. 🍪

PARK, Ghwang Chun STEELLIFE Co. LTD. roof1@steellife.net

스틸라이프 대표로 몽골신공항, 현대자동차 일산복합관 등을 진행중이며, 다년간 비정형 외장 설계 및 생산기술을 개발 완성하여 해외의 유명 설계사무소와 비정형건물 프 로젝트를 진행중이다.

Ghwangchun Park is the CEO at STEELLIFE Co. Ltd., which he is working projects such as an airport in Mongolia and Goyang Auto Complex by Hyundai Motors. Since his company STEELLIFE Co. Ltd. has developed many irregularly shaped façade designs with fabrication technologies, many famous international architectural design firms cooperate with him and his team.

KIM, Seon Woo Partner SYNTEGRATE LLC. seonwoo@syntegrate.build

2014년부터 신테그레이트(Syntegrate) 및 신테그레이트 파사드 디자인(Syntegrate Façade Design) 파트너로서 대 한민국을 포함한 아시아 퍼시픽 및 중동지역에서 홍콩 지 하철 확장공사, 일본 국립 경기장 등을 포함한 디자인 및 건설 IT 컨설팅(Design and Construction IT) 및 외장 설계 및 엔지니어링(Façade Design and Engineering) 프로젝트 들을 총괄하고 있다.

Since 2014, he has overseen project delivery, operations, and business development at Syntegrate LLC and Syntegrate Façade Design as a partner. Syntegrate is providing the services for Design and Construction IT and Façade Design and Engineering in Asia Pacific and Middle East and have already been appointed to several high profile projects including Mass Transit Railway Project 901, Tokyo National Stadium and so on.